Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Braz. j. med. biol. res ; 51(3): e5612, 2018. graf
Article in English | LILACS | ID: biblio-889034

ABSTRACT

Breast cancer is the most common cause of cancer among women in most countries (WHO). Ovarian hormone disorder is thought to be associated with breast tumorigenesis. The present study investigated the effects of estrogen and progesterone administration on cell proliferation and underlying mechanisms in breast cancer MCF-7 cells. It was found that a single administration of estradiol (E2) or progesterone increased MCF-7 cell viability in a dose-dependent manner and promoted cell cycle progression by increasing the percentage of cells in the G2/M phase. A combination of E2 and progesterone led to a stronger effect than single treatment. Moreover, cyclin G1 was up-regulated by E2 and/or progesterone in MCF-7 cells. After knockdown of cyclin G1 in MCF-7 cells using a specific shRNA, estradiol- and progesterone-mediated cell viability and clonogenic ability were significantly limited. Additionally, estradiol- and progesterone-promoted cell accumulation in the G2/M phase was reversed after knockdown of cyclin G1. These data indicated that estrogen and progesterone promoted breast cancer cell proliferation by inducing the expression of cyclin G1. Our data indicated that novel therapeutics against cyclin G1 are promising for the treatment of estrogen- and progesterone-mediated breast cancer progression.


Subject(s)
Humans , Female , Progesterone/pharmacology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Estrogens/pharmacology , Cyclin G1/metabolism , Breast Neoplasms/metabolism , Cell Survival , Blotting, Western , Real-Time Polymerase Chain Reaction , MCF-7 Cells/drug effects
2.
Braz. j. med. biol. res ; 50(5): e5831, 2017. tab, graf
Article in English | LILACS | ID: biblio-839293

ABSTRACT

The epithelium is a highly dynamic system, which plays a crucial role in the homeostasis of the intestinal tract. However, studies on the physiological and pathophysiological functions of intestinal epithelial cells (IECs) have been hampered due to lack of normal epithelial cell models. In the present study, we established a reproducible method for primary culture of mouse IECs, which were isolated from the viable small intestinal crypts of murine fetuses (on embryonic day 19), using type I collagenase and hyaluronidase in a short span of time (≤20 min). With this method, continuously growing mouse IECs, which can be subcultured over a number of passages, were obtained. The obtained cell lines formed a tight cobblestone-like arrangement, displayed long and slender microvilli, expressed characteristic markers (cytokeratin 18 and Notch-1), and generated increasing transepithelial electrical resistance and low paracellular permeability during in vitro culture. The cells also had enzymatic activities of alkaline phosphatase and sucrase-isomaltase, and secreted various cytokines (IL-1β, IL-6, IL-8, and monocyte chemoattractant protein-1), responding to the stimulation of Escherichia coli. These results show that the primary-cultured mouse IECs obtained by the method established here had the morphological and immunological characteristics of IECs. This culture system can be a beneficial in vitro model for studies on mucosal immunology and toxicology.


Subject(s)
Animals , Male , Female , Cell Culture Techniques/methods , Epithelial Cells/cytology , Hyaluronoglucosaminidase , Intestine, Small/cytology , Matrix Metalloproteinase 13 , Cell Proliferation , Cells, Cultured , Collagenases , Cytokines/metabolism , Epithelial Cells/metabolism , Fluorescent Antibody Technique , Hematoxylin , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL